Automatic Schema Design for Co-Clustered Tables

Stephan Baumann #, Peter Boncz *, Kai-Uwe Sattler #

Databases and Information Systems Group, Ilmenau University of Technology, llmenau, Germany
first.last@tu-ilmenau.de

*Centrum Wiskunde & Informatica, Amsterdam, Netherlands
boncz@cwi.nl

Abstract—Schema design of analytical workloads provides
opportunities to index, cluster, partition and/or materialize. With
these opportunities also the complexity of finding the right
setup rises. In this paper we present an automatic schema
design approach for a table co-clustering scheme called Bitwise
Dimensional Co-Clustering, aimed at schemas with a moderate
amount dimensions, but not limited to typical star and snowflake
schemas. The goal is to design one primary schema and keep the
knobs to turn to a minimum while providing a robust schema
for a wide range of queries. In our approach a clustered schema
is derived by trying to apply dimensions throughout the whole
schema and co-cluster as many tables as possible according to
at least one common dimension. Our approach is based on the
assumption that initially foreign key relationships and a set of
dimensions are defined based on classic DDL.

I. INTRODUCTION

Physical schema design is an important task for database
development, maintenance and tuning. Particularly, analytic
workloads with complex queries can take benefit from indexes,
clustering, partitioning and materialized views. However, even
moderately sized schemas lead to a huge search space of
possible configurations of these database objects. Typically,
i.e. provided by most commercial systems, this problem is
addressed by so-called design advisors which are able to
analyze a given workload and to derive recommendations for
an optimal configuration. Though, this works quite well for
static scenarios with fixed workloads, dynamic environments
(in terms of data characteristics and query workload) still
pose a serious challenge. One possible solution is to monitor
the workload and adapt the configuration continuously [1],
[2]. However, changing a configuration at runtime, e.g. create
new indexes, change clustering strategies or materialize query
results can become quite expensive and affect the response
times significantly.

An alternative approach is to derive a schema that is agnos-
tic to the workload, i.e. not optimal for a specific set of queries
but supports a wide range of queries of a given patterns. In
this work, we present such an approach for analytic workloads
on typical star or snowflake schemas. Bitwise Dimensional
Co-Clustering (BDCC) is a scheme for co-clustering plain
relational tables and sharing multiple dimensions at once.
BDCC replaces the original relational table and accelerates
typical star joins on foreign key relationships and selections.

In order to design a BDCC schema two main questions have
to be answered: which tables should be replaced by a BDCC
table and which dimensions are taken into account. For this
purpose we could look

o at the original schema mainly for primary and foreign key
constraints and perhaps some basic data characteristics
(e.g., number of distinct values on dimensions)

o at the workload to identify frequently used joins and
selection predicates.

The goal of this work is to capture this information by a simple
set of schema hints which basically specify only dimensions
and their relational representation. Based on this, we present a
strategy to derive a BDCC schema without requiring workload
information. The remainder of this paper is structured as
follows. In Section II we briefly introduce our co-clustering
scheme BDCC, in Section III we present algorithms for our
automated approach to a physical design of BDCC, Section IV
shows that our automated design widely accelerates the TPC-
H workload, Section V discusses related work, followed by a
conclusion in Section VI.

II. INTRODUCING BDCC

With BDCC we co-cluster plain relational tables in order
to share (at least partially) dimensional information between
tables, when these are connected over foreign key relationships
or use the same dimensions. In addition, we re-organize each
relational table according to local and foreign key connected
dimensions. As a result of this re-organization we can later
accelerate joins between co-clustered tables and benefit from
efficient access to these tables over dimension attributes.
In BDCC, each relational table T is replaced by a new
table Tppcc, Where inside the table clusters are formed by
consecutive tuples with the same dimensional characteristics.
These are represented by equal values of an artificial attribute
Tppce. _bdcc_, that is later used during query processing to
perform the above query optimizations.

The main benefits of a co-clustered table layout are:

(i) Selection pushdown for a dimension, or a correlated
attribute to that dimension, that is used for clustering a
table. Similar to most index structures.

Selection propagation between co-clustered tables, if the
tables share a common dimension. Even propagation of
selections on correlated attributes to the shared dimension.
Join acceleration based on the co-clustered layout that
results in a pre-grouping on both join inputs. In [3] we
explain how to exploit this pre-grouping using Sandwich
Operators with the result of faster execution times and
significantly reduced memory while processing the same
amount of data.

(ii)

(iii)

:ime"Si"" IDZ BDCC table B
g‘g r % other cols _bdcc_
o1 998 b y__| 000000000000
0 999 c z 00000000000
1 2000 d y 00000000001
FK_A_D2 a z 01111111111
BDCC table A EK B A b X 00000000000
other cols | _bdcc_ - a z 00000000000
™ o | 0000 d y_| 100000000001
m p_| 0000 a P IREEERERERERE]
| p | 0001
FK B C
K q | o111
1 » T 1000 BDCC table C
m o 1000 other cols | _bdcc_
k q 1001 f r 000 dimension D3
=+ h r 000 binnr_| value
| z 1111 g T 001 00
" " 01 9
dimension D1 g s 111 10 13
binnr value FK_A_D1 f r 000 11 19
00 Africa g t 000 T
01 America f s 001
10 Asia
11 Europe FK_C_D1 f S 111 FK.C.D3
Fig. 1. Example of a co-clustered BDCC schema.

To co-cluster tables using BDCC, we need to (a) identify
dimensions in a schema, respectively dimension keys and (b)
specify how these dimensions are used for clustering. But first,
we need a definition of a dimension.

A BDCC dimension is an order respecting surjective mapping
from a subset of attributes K (the dimension key) of a given
relation onto a finite sequence of identifiers. In other words, a
single identifier (bin number) is assigned to each tuple based
on the values of the considered key K, and multiple tuples can
be mapped onto a single bin, where smaller attribute values
are mapped to smaller identifiers. Formally:

Definition 1 (BDCC Dimension). A BDCC dimension
D = (T, K, S) is defined over dimension key K(D)=K =
(attry,...,attrs),s > 1, of table T(D) = T as a finite
sequence S(D) = S = ((n1, V1), (n2, Va),... (nm, Vin)) of
m(D) = m = |S| dimension entries. Each entry consists
of a bin number n; and a bin (set) of values V; such that
Ugﬂ/i = {v|v € T.K}. Further:

(i) bin numbers are ascending: V1 <i<j<|S|: n;<n,.

(ii) bins of S(D) never overlap: V1 <i<j<|S|: V;NV;=0.

(iii) bins of S(D) are ordered:

V1<i<j<|S|: MAX (Vi) < MIN(V;).
(iv) a bin (n;,V;) is unique if V; is a singleton (|V;| = 1).
(v) binp(v) = ny; is the bin number of value v € V.

(vi) bits(D) = [loga(]S|)] is the dimension granularity, i.c.,
the number of bits needed to represent bin numbers.

(vii) a dimension D|, with reduced granularity g < bits(D)
bits is derived from dimension D if one chops off the
bits(D)-g least significant bits of all bin numbers from
D and unites all bins that now have the same number.

Figure 1 shows three dimensions for a simplified BDCC
schema. Note, that we only show the dimensions in this
example and also use them as representatives for the relational
tables behind them. Dimension D1 is a simple geographical
dimension with four continents, dimension D2 is a time
dimension with four years and dimension D3 is a dimension
using range binning with four bins (2 bits), where the bin
boundaries are represented by value.

Because of the co-clustered layout and shared dimensional

information between co-clustered tables, dimension keys may
not only be local attributes of T, but also attributes from other
tables reachable over foreign keys along a dimension path P.

Definition 2 (Dimension Path). A dimension path P is
defined as a (possibly empty) chain of foreign key traversals
P=FK T, T,,FK T, T5.--- .FK_T, _1_T,, froma con-
text table T} to table T,, hosting the dimension key. Here we
assume that foreign key relationships have been declared using
some identifiers FK_T; T, from table T; to table T; .

In the example in Figure 1 we also illustrate the for-
eign key relationships inside this schema by the notation
FK_TableX_TableY. Table C, for example, is foreign key
connected to dimension D1 via FK_C_D1. Table B also is
foreign key connected to dimension D1, while this time not
directly, but over table A resulting in the dimension path
FK_B_A.FK_A_DI.

The explicit usage of a dimension in a table 7' is then
defined via a dimension use, where a dimension path identifies
the dimension with its keys and a bitmask controls how the
dimension is used for clustering. The number and positions of
set bits in this mask define the granularity and the priority on
the combined ordering inside a table’s clustering.

Definition 3 (Dimension Use). To specify a clustering cri-
terion for a table T, a dimension use U = (D, P, M)
combines a BDCC dimension D(U) = D, a dimension path
P(U) = P that leads from T to dimension key K(D) and
a bitmask M(U) = M, that defines the number and the
positions of the dimension bits in Tgpcc._bdcc_. The number
of bits used from dimension D for clustering is ones(M),
ones(M)<bits(D).

Lets take a look at the dimension uses for table C in Fig-
ure 1. This tables uses two dimensions D1 and D3. So Up; =
(D1,FK_C_D1,1010) and Ups = (D3, FK_C_D3,0101).
M (Upy) = 1010 places the two bits of dimension D1 in the
first and third position (red) of the ordering key bdcc .

A BDCC table definition is then straightforward:

Definition 4 (BDCC Table). A BDCC table TBpcc =
(T U1, ...,Uq,b) clustered on b bits is defined over a
source table T by specifying d dimension uses Uy,...,Uy
under the constraints

(i) all b bits are set: M(Uy)|...|M(Uy) =2°—1

(ii) no bits overlap: Vi,j:1<i<j<dANMU;)&MU;)=0
Each tuple tgpcc € Tppcc is a copy of t € T with
an additional attribute value tgpcc._bdcc_, where for each
dimension use U; we look up bin number n; = binp(t.P.K),
with P = P(U;), D = D(U;), K = K(D) and map the major
ones(M (U;)) bits of n; to _bdcc_ according to mask M (Uy;).
Tepcc is stored sorted on attribute Tgpcc._bdcc_.

In addition a metadata table Tcoyyr(_bdcc , count) is
created, counting the frequency of each _bdcc_ value.

The example in Figure 1 contains three fact tables that are
BDCC clustered. We can see that table C is clustered using
two dimensions D1 and D3 (light red and green) using a round
robin bit interleaving pattern for the clustering key bdcc .

In a similar way, table A is clustered using dimensions D1 and
D2 (dark red and blue). Because tables A and B are foreign
key connected (FK_B_A) and table A is clustered by D1 and
D2, we keep A and B co-clustered on these two dimension
(both use dark red and blue bits in _bdcc). As B is also
foreign key connected to table C (FK_B_C), we also keep B
and C co-clustered using again D1 (light red) and D3 (green).
Here, we have to distinguish between the two dimension uses
of DI in table B as the foreign key paths are different, and
thus, each use can logically be a different dimension. Note,
that A and C, though not foreign key connected, are still co-
clustered on dimension D1. This is useful in situations when
we are looking for tuples in A and C from matching nations.
A scenario very likely if both fact tables contain data related
to for example the same customers.

Scanning BDCC tables To access a BDCC table we use a spe-
cialized scatters-scan, that is able to retrieve any major-minor
order of the dimension that are interleaved in the bdcc
column. The offsets for the scatter-scan are calculated from
Tcounr. This scan adds an additional group identifier to the
stream, that is used during query optimization, see [3]. In the
example from Figurel this means that for table A this scan
can retrieve data in the orders (D1), (D2), (D1,D2), (D2,D1).

III. AUTOMATIC SCHEMA DESIGN

Designing a BDCC schema raises various questions. Pri-
marily (a) which dimensions to choose, (b) how to create
them, and (c) how to co-cluster a schema based on the chosen
dimensions. For (b) we refer to [4], where we explain how
to create balanced dimensions when faced with skew. In the
following we outline answers on:

(1) how to self-tune a BDCC table for given dimensions?
(ii) how to find BDCC dimensions?
(iii) how to make a BDCC schema-design and parameter
setting auto-tuned?
(iv) how to treat hierarchical and correlated dimensions?

Selecting data from any multi-dimensional structure on a
subset of the dimensions typically leads to a scattered disk
access pattern. Magnetic disk and — contrary to common
belief — also flash-based storage performs sequential access
more efficiently than random. Still, for any device, one can
determine an efficient random access size Agr such that
random reads approach the efficiency of sequential reads (e.g.
such that throughput is 80% of sequential throughput). Multi-
dimensional schemes, hence, must make sure that the access
pattern they generate on average conforms to this efficient
random I/O size. Currently, the efficient access size is roughly
a few MB for magnetic disks, for Flash devices just 32KB [5].

Which dimension order to choose? Classical multi-
dimensional approaches like MDAM [6] require a DBA to
order the dimensions from major to minor. This favors access
along major dimensions as the granularity of I/O access for
(selections on) minor dimensions is very small (scattered).
BDCC can use any kind of bit-interleaving, hence also major-
minor ordering; For applications with clear major, minor

dimensions this approach is fine, and is supported in BDCC
by manual definitions.

However, major-minor ordering has as disadvantages that
(i) dimension order is a knob that might get tuned wrongly
and (ii)) major dimensions get a much better access pattern
than minor. Following the UB-Tree work [7], we prefer round-
robin bit interleaving instead, storing tuples in Z-order. This
eliminates the question of how to order a table’s dimensions
and distributes fast access among all dimensions.

Self-tuned BDCC table. From the definition of a BDCC table
(Definition 4) it follows that for each table of the schema
a number of dimension uses and the clustering depth need
to be specified, which boils down to providing a dimension
path to each dimension and an interleaving pattern of the bits
from all dimensions, expressed by the masks of the dimension
uses. Fixing the interleaving pattern to be round-robin we
liberate a DBA from inferring about BDCC bits. Assuming
a given set of used dimensions for a table T, we provide a
self-tuned algorithm, that automatically creates a round-robin
clustered BDCC table Tgpce. The idea is to bulk-load BDCC
tables initially at a maximal granularity, but then to only create
meta-data (the count-table) on a lower granularity; exploiting
statistics gathered during bulk-load. This keeps the count-table
small, such that BDCCscan can access it quickly.

Algorithm 1 (Self-Tuned BDCC Table). To BDCC cluster a
table T we assume initial dimension uses {U;, ..., Uy}

(i) Initially set masks M (U;) so that dimensions are round-
robin interleaved in some arbitrary order, assigning one bit at
a time (major to minor) per foreign key or local dimension.
If two dimensions are used over the same foreign key, bits
assigned to this foreign key are distributed round robin to
each of these dimensions. This assures that all foreign key
joins of the table are equally accelerated. Assign bits until
the full granularity of each dimension is used: the number of
1-bits B in all masks is maximal: B = Zlf bits(D(U;)).
(i1) Compute the bdcc column with this maximal granu-
larity and store T sorted on _bdcc_, analyze the group sizes
in a piggy-backed aggregation (together with the “correlated
dimensions” analysis below).

(iii) Find the column that is largest on disk (highest density),
choose the largest granularity b < B such that the size in bytes
of most groups is still above the efficient random access size
Ap, for this column.

(iv) Create Tcouyr for this reduced granularity b, in a single
ordered aggregation counting consecutive tuples with equal
value _bdcc_ > (B-b) (Since T sorted on _bdcc at
granularity B is also clustered for b < B).

Note, that in (i) other options are possible. One could simply
round robin interleave all dimensions without respecting the
foreign key, or each foreign key could be weighed according to
the size of the join, detailed weights could also be calculated
from a workload analysis and so on. Our goal here is, to keep
it simple and robust for many workloads, so we advocate to
look at the outgoing foreign keys.

Automatic BDCC schema. The question remains, where di-
mensions used for clustering a table come from. In our schema
design approach a DBA just needs to identify foreign key joins
and indicate that access to certain columns is important, just
like in classic DDL. From this we infer a co-clustered schema:

Algorithm 2 (Semi-automatic Schema Design). An existing
database is BDCC clustered in three phases. Interpreting
CREATE INDEX([q,...,Iz) on T statements as BDCC hints
and exploiting declared foreign keys:

(i) Traverse the schema DAG (projection) from the leaves,
identifying relevant dimensions and dimension uses. Observe
for each table T its index declarations. If {1, ..., Iz} equals
a foreign key, inductively add all dimension uses of the
referenced table Ty also to 7', putting the FK-id in front
of the dimension paths (P = FK_T Ty,.Pyy). Otherwise,
identify a new dimension with key {I1,...,1z}, and add it
as a dimension use to 7.

(ii) Create the dimensions one by one, using a fixed maximal
granularity derived from the usage and the number of distinct
values of a dimension (e.g. bits(D) < 13). Our algorithm
in [4] takes into account the distribution of dimension values
across all tables T; where the dimension is used, creating a
histogram on the union of all tables 7; joined over dimension
path P;, projecting only the dimension keys.

(iii) BDCC cluster all tables at a self-tuned granularity using
Algorithm 1.

We are aware of a limitation of Algorithm 2: on very large
schemata (much larger than TPC-H), with many tables, foreign
keys and index declarations (=hints), it will identify foo many
dimension uses for a table. For example, in a table with 8G
tuples (233) with a widest column of 64 bytes per tuple (2°),
and an efficient random access size Ar = 32KB (2'°), one can
use in total 33+6—15 = 24 bits to cluster on, because with 224 =
16M groups, each group of values for that widest column then
takes Ar = 32KB, hence can be read efficiently in scatter
scans. One could cluster on 24 dimension uses of 1bit each,
but more realistically is limited to 5-8 dimension-uses (3-5 bits
each). This results in a maximum of 8x to 32x I/O reduction
in selection pushdown and already significant acceleration and
memory reduction for sandwiched operators (see [3]), even if
only a single dimension is involved. Extending Algorithm 2
is beyond our scope here, but future directions are (i) ignore
dimension uses with less impact on a workload, or (ii) re-
consider replication to create more opportunities for BDCC
(one of the questions will be which dimensions to use for
which replica).

Hierarchical dimensions as found in snowflake schemas
occur if the key of one dimension determines the key of
another. This is for example the case for n nationkey
with respect to r _regionkey in the TPC-H schema. Though
our implementation exploits hierarchy among dimensions in
rewrites, it treats all dimensions independently, because hier-
archical bin numbering schemes [7] are very hard to maintain
under updates. Hierarchical dimensions are an extreme form
of correlated dimensions.

Correlated dimensions in a BDCC table Tgpcc that is round-
robin clustered on d dimension uses with b bits each, may
lead to non-evenly distributed group sizes or even signifi-
cantly less groups than the expected 2?, even though the
individual dimensions were created with a frequency-based
binning algorithm. BDCC gathers statistics and adapts to
such effects. During bulk-load, a special aggregation operator
creates for each of the d-b possible count-table bit granularities
a logarithmic group size histogram (entry x counts groups of
size [2*71,27)). Algorithm 1 uses this to choose a count-
table granularity with the byte-size in the highest density
column > Ap, for the vast majority of groups. If correlations
or hierarchies among dimensions cause missing groups, this
algorithm hence automatically chooses a higher count-table
bit granularity to maintain good average group sizes. Hence,
“puff pastry” does not hurt; BDCC always uses enough bits
to get good selectivity.

After bulk-load, the low percentage of data in very small
groups < Ar, tolerated by Algorithm 1 is copied and appended
once more to table T, and the original very small groups are
marked invalid in the count-table. Thus, very small groups
get stored consecutively, generating better caching of these
frequently re-accessed pages in the buffer pool.

IV. EVALUATION

System setup. We evaluated on an Intel Xeon E5505 with
16GB main memory and 32KB L1, 256KB L2 and 4096KB
L3 cache. The operating system is a 64 bit Debian, kernel
version 2.6.32. Databases were stored on a RAIDO of 4 Intel
X25M SSDs with a stripe 128KB and maximal bandwidth of
1GB/s. As BDCC does not yet support parallelization, queries
are only executed on a single core. Vectorwise was set to use
4GB buffer space and 12GB query memory. The page size
was 32KB. The group size was set to 1.

TPC-H Experiments. We use the 100GB TPC-H benchmark
to compare an automatically created BDCC schema with a
plain database without any indexing, and with a primary key
indexed (PK) database and show that it is by far superior to
both of them. Further we show that the BDCC setup achieves
its performance gain across the full query set, showing that one
BDCC schema without replication is sufficient in such a case.
All three schemes use automatic compression, take roughly
55GB on disk, and are implemented end-to-end in the same
system (Vectorwise), so the comparison is apples-to-apples.

Primary key scheme. One straightforward approach of in-
dexing is to use primary key indexing. For the TPC-H setup
this means that the LINEITEM-ORDERS join becomes a merge
join as both tables share the major primary index key, also the
PARTSUPP-PART join becomes a merge join. However, as many
attributes that queries select on do not group the primary key,
important dimensions cannot be recognized by this scheme and
possibilities for selection pushdown are missed. In addition
primary key indexing does not result in any co-locality for
most of the tables and no optimizations similar to merge or
sandwich techniques can be performed.

100

90 plain run time
PK Plain 630,825
80 BDCC PK 491,33s
70 BDCC 284,43s
c
[
£60
=
50
240
3
8 30
X
Wag
10
0

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Query Number

Fig. 2. Execution times of TPC-H SF100 for BDCC, PK and Plain storage
schemes.

BDCC scheme. We used Algorithm 2 to semi-automatically
design the physical BDCC schema given as input DDL state-
ments consisting of the usual foreign keys for TPC-H, plus

CREATE INDEX date_idx ON ORDERS(o_orderdate),
CREATE INDEX part_idx ON PART(p_partkey),

CREATE INDEX nation_idx ON NATION(n_regionkey, n_nationkey).

The latter compound key allows the query rewriter to
detect that a region equi-selection determines a consecutive
D NATION bin range. Note, that in this setup, we limit
ourselves to only key and date columns, which is closer to
TPC-H restrictions, significantly simplifies the selection of
create index statements, but may miss opportunities.

Using this DDL, Algorithm 2, which treats CREATE INDEX
just as hints for BDCC, creates the following dimensions:

BDCC dimension D |[bits(D) [table T'(D) key K (D)

D_ NATION 5 |NATION n_regionkey,n nationkey
D_PART 13| PART p_partkey

D_DATE 13 | ORDERS o_orderdate

In addition we declared indices on the foreign key references
o custkey, s nationkey, ¢ nationkey, 1 orderkey,
1 partkey, 1 suppkey, ps_partkey and ps_ suppkey
that are used to derive the co-clustering of the tables.

Algorithm 2 clusters NATION on D NATION and PART on
D PART. Dimension uses also get included in the referencing
tables, over the foreign keys with a declared index (treated
as a hint). This way, SUPPLIER and CUSTOMER get clustered
on D NATION, and ORDERS also gets clustered on D NATION
(via CUSTOMER), as well as on D DATE, which is a local
dimension in ORDERS. PARTSUPP gets clustered on D PART,
and on D NATION, here D NATION is connected over foreign
key via the SUPPLIER table. LINEITEM gets clustered on
all dimensions. In fact, as in the TPC-H schema graph two
different join paths exist between LINEITEM and NATION, it
gets clustered twice on D NATION: both for customer and
supplier nations — similar to dimension D1 in Figure 1. This
yields the following dimension uses per table:

[BDCC Table[D(U;) [P (U:) I MU
NATION D_NATION |- 11111
SUPPLIER D _NATION|FK S N 11111
CUSTOMER D_NATION|FK_C_N 11111
PART D_PART TITTTT11]
PARTSUPP |D_PART |FK_PS_P 1010101010 TITT111
D NATION|FK PS S.FK S N 10101010100000000
ORDERS D_DATE |- 10101010101 TIT1111
D_NATION|FK 0 C.FK C N 10101010100000000
LINEITEM |D_DATE |FK_L_O 10001000100010001000
D NATION|FK L O0.FK 0 C.FK _C_N| 1000100010001000100
D_NATION|FK L _S.FK_S_N 100010001000100010
D_PART |FK_L_P 10001000100010001

8
7 plain
PK
Qg BDCC
[0]
c
£ 5
= run Memory
@ 41| plain 38,09GB
4 PK 10,74GB
g 3 BDCC 1,68GB
22
1
0 M [| | T . I- I Il I n I -
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Query Number
Fig. 3. TPC-H SF100 Memory Usage for BDCC, PK and Plain storage
schemes.

Given that the highest density column 1 comment has 550000
pages (using Ap = 32KB), Algorithm 1 chose to cluster
LINEITEM using granularity [log, 550000] = 20 bits.

In comparison to the PK scheme this setup looses the
two efficient merge joins, but gains sandwiched execution
across the whole schema instead, and because of its co-
clustered setup, selections are more efficiently pushed down
and propagated, again, across the whole schema.

Overall Results. Figure 2 shows cold execution times for all
22 TPC-H queries. The PK setup gains 139 seconds compared
to the plain schema setup, mostly through the LINEITEM-
ORDERS merge join. BDCC by far outperforms both schemes,
more than twice as fast as plain and 208 seconds (42 %)
faster than the PK setup, because co-clustering across multiple
dimensions permits to push down these and more selections
to all tables affected, and in addition accelerates more joins
across the whole workload - this way compensating for loosing
the merge join for LINEITEM and ORDERS. Vectorwise auto-
matically creates MinMax indices on each table [8], which in
addition to all dimension selections can push down selections
correlated with a accelerated dimensions (e.g. shipdate selec-
tions are pushed down, as LINEITEM and ORDERS tables have
orderdate locality). We can also see, that the automated BDCC
schema accelerates almost all of the 22 queries proving to be
suitable for the full query set. In QO1 there is no significant
acceleration to be achieved with indexing methods as it is a
95%-97% full scan of the involved columns and in Q16 the
Sandwiched aggregation does not pay back enough to cover
up for the extra time spent in processing the extra bdcc
column in the joins below.

Memory. Figure 3 shows that our automated BDCC schema
not only proves to be fast, but also proves to be very memory
efficient. Particularly we can see that with the automated setup
we are able to tackle every significant memory intensive join
or aggregation, as the setup includes all outgoing foreign key
paths. This leads to predictable low memory consumption for
all queries. This way, BDCC on average needs much less
memory than plain (0.09GB vs. 1.59GB), and peak memory
usage drops from 8GB to 275MB for SF100 TPC-H. Also,
compared to PK, BDCC still is more memory efficient by a
factor 6 (peak 13x), even with the “big” join gone for the
PK setup, as BDCC reduces memory for all significant joins
due to its co-clustering approach across the whole schema.
For all experiments, we configured query memory such that

hash-operators would never spill, otherwise the differences to
the memory intensive queries would have been much higher.

Detailed Analysis. BDCC accelerates Q02, Q3, Q4, Q5, Q7,
Q8, Q10, Q11, Q14, Q15, Q20, Q21 and Q22 by selection
pushdown and sandwich operators. In Q6, Q12 and Q20
the automatic BDCC setup benefits from the correlation of
o orderdate and 1 shipdate, allowing MinMax indices
to identify pushdown ranges. BDCC acceleration in Q09 and
Q13 strictly comes from sandwiched execution of joins. In
Q13, the HashJoin(ORDERS,CUSTOMER) is sandwiched based
on the common customer D NATION dimension, although
NATION is not even involved in the query, but the join key
c_custkey implies the nation of a customer. This sandwich-
ing strongly reduces memory usage compared to PK, where
a full materialization of the CUSTOMER columns is required.
Same holds for Q10, Q18 and Q22. In Q14 the join to PART
is reduced. In Q16 the count of the distinct s suppkeys is
sandwiched, shrinking the hash table by a factor of 25 at the
cost of a HashJoin instead of MergeJoin between PART and
PARTSUPP. Q18 performs a full aggregation of LINEITEM on
1 orderkey; sandwiching helps here with respect to plain,
but the streaming aggregate applied by the PK scheme cannot
be beaten.

We acknowledge that a fine tuned setup may be faster for
some of the queries, but may loose for others. For example
Q16, Q17 or Q19 would benefit from explicitly indexing
on p_brand or p_container or p_type. However, it is
difficult to choose one column over the other without looking
at the query set, also we restricted our index hints to key and
date columns, which left us with p partkey in this case.

Other Orderings. In a self comparison we also compared
the automatic Z-order setup with a hand created major-minor
setup, using the same dimensions and numbers of bits as
shown in the tables above, favoring the important time di-
mension as the major dimension. Again, with buffer setup not
requiring the adaptive scan, in order not to penalize the minor
part dimension. Both runs are comparable, the automatic setup
is slightly faster (284sec vs. 291sec).

V. RELATED WORK

The problem of deriving good partitioning schemes has been
studied in physical database design tuning [1], [9], [10] and
others. Our focus here is not on partitioning but co-clustering
tables in a single primary schema without replication.

Also index recommendation [1], [2] has been widely stud-
ied, but these approaches result in multiple index recommen-
dations, where we only aim at a single co-clustered setup.
The proposed administration tool in addition also suggest
materialized views.

While [11] describes design techniques for multi-
dimensional clustering, it does not consider the effects and
opportunities based on the co-clustering approach, and is in
that sense missing many opportunities to an efficient physical
design.

Many approaches use workload monitoring to derive and
modify a physical database design, examples are [12], [2], [1].

Here, we do not consider workload monitoring and analysis,
but rather use to power of the co-clustered setup to define a
robust physical schema, as it is much more costly to re-design
the primary schema than adding/dropping additional views or
indexes.

Our automatic schema creation algorithms use the concept
of Z-ordering introduced in [13] and previously applied in
Mistral [7], which explores bit interleaving in Z-order for
multi-dimensional clustering.

VI. CONCLUSIONS

In this paper we show an easy to use automatic schema
design for co-clustered tables that delivers a robust query
performance for small to medium sized schemas. Many re-
finements of the proposed approach are possible, for example
to take statistics about data or workload into account to find
the initial set of dimensions automatically, or to combine
the automated co-clustering with partitioning if the scenario
requires it. We leave this for future work.

REFERENCES

[1] D. C.Zilio, J. Rao, S. Lightstone, G. M. Lohman, A. J. Storm, C. Garcia-
Arellano, and S. Fadden, “DB2 Design Advisor: Integrated Automatic
Physical Database Design,” in VLDB, 2004.

[2] S. Agrawal, N. Bruno, S. Chaudhuri, and V. Narasayya, “Autoadmin:
Self-tuning database systemstechnology,” IEEE Data Eng. Bull, vol. 29,
no. 3, pp. 7-15, 2006.

[3] S. Baumann, P. Boncz, and K.-U. Sattler, “Query Processing of Pre-
Partitioned Data Using Sandwich Operators,” in BIRTE, 2012.

[4] ——, “Creating Dimensions for BDCC,” TU Ilmenau,
www.dbis.prakinf.tu-ilmenau.de/publications/files/DBIS:DimEnc.pdf,
Tech. Rep., July 2012.

[5]1 S.Baumann, G. de Nijs, M. Strobel, and K. Sattler, “Flashing Databases:
Expectations and Limitations,” in DaMoN, 2010.

[6] H. Leslie, R. Jain, D. Birdsall, and H. Yaghmai, “Efficient Search of
Multi-Dimensional B-Trees,” in VLDB, 1995.

[7] V. Markl, MISTRAL: Processing Relational Queries using a Multidimen-
sional Access Technique. Institut fiir Informatik TU Miinchen, 1999.

[8] D. Inkster, P. Boncz, and M. Zukowski, “Integration of VectorWise with
Ingres,” SIGMOD Record, vol. 40, no. 3, 2011.

[9] S. Agrawal, V. R. Narasayya, and B. Yang, “Integrating Vertical and

Horizontal Partitioning Into Automated Physical Database Design,” in

SIGMOD, 2004.

C. Baldwin, T. Eliassi-Rad, G. Abdulla, and T. Critchlow, “The Evolu-

tion of a Hierarchical Partitioning Algorithm for Large-scale Scientific

Data: Three Steps of Increasing Complexity,” in SSDBM, 2003.

[11] S. S. Lightstone and B. Bhattacharjee, “Automated design

of multidimensional clustering tables for relational databases,”

in Proceedings of the Thirtieth international conference on

Very large data bases - Volume 30, ser. VLDB ’04.

VLDB Endowment, 2004, pp. 1170-1181. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1316689.1316789

N. Bruno and S. Chaudhuri, “Constrained physical design tuning,”

Proc. VLDB Endow., vol. 1, no. 1, pp. 4-15, Aug. 2008. [Online].

Available: http://dl.acm.org/citation.cfm?id=1453856.1453863

J. A. Orenstein and T. H. Merrett, “A class of data structures

for associative searching,” ser. PODS ’84. [Online]. Available:

http://doi.acm.org/10.1145/588011.588037

[10]

[12]

[13]

